

Closed-Loop Library Documentation

BWClosedLoop.dll Version 1.1.0.1

Date June 2014

Document title

2

All rights reserved. No parts of this work may be reproduced in any form or by any means - graphic, electronic,

or mechanical, including photocopying, recording, taping, or information storage and retrieval systems -

without the written permission of the publisher

Microsoft, Windows and Visual Studio are registered trademarks of Microsoft Corporation. Products that are

referred to in this document may be either trademarks and/or registered trademarks of their respective

holders and should be noted as such. The publisher and the author make no claim to these trademarks.

While every precaution has been taken in the preparation of this document, the publisher and the author

assume no responsibility for errors or omissions, or for damages resulting from the use of information

contained in this document or from the use of programs and source code that may accompany it. In no event

shall the publisher and the author be liable for any loss of profit or any other commercial damage caused or

alleged to have been caused directly or indirectly by this document

© 2014 3Brain GmbH

Document title

3

Contents

1. Introduction .. 5

1.1. About this manual ... 5

1.2. Requirements ... 5

1.3. Use the library for development ... 5

2. Overview ... 6

2.1. Specifications and data format ... 6

2.2. Tests .. 7

3. Function Reference ... 8

3.1. Subscribe ... 8

3.2. Unsubscribe ... 8

3.3. SetCallbackThreadPriority .. 9

3.4. GetNBuffers ... 9

3.5. GetBufferLevel ... 9

3.6. GetSamplingRate ... 9

3.7. GetMVOffset ... 9

3.8. GetADCCountsToMV ...10

3.9. GetArrayNRows ...10

3.10. GetArrayNCols ...10

3.11. GetNAcqChannels ..10

3.12. GetIndexesOfAcqChannels .. 11

3.13. ChannelIndexToSubscripts ... 11

3.14. ChannelSubscriptsToIndex ... 11

3.15. GetAcqFramePositionOfChannel.. 12

Document title

4

Document title

5

1. Introduction

1.1. About this manual

This manual comprises information about the BWClosedLoop library that can be used to access BioCAM

acquired data in real-time. It is assumed that the reader already has a basic understanding of technical and

software terms.

BWClosedLoop.dll has been written in the C++ programming language and it extends the functionality of

BrainWave.

BWClosedLoop.dll can be used to implement a custom application in order to access online data, process it

and provide a feedback by means of external stimulation to your biological preparation, hence closing the

loop.

1.2. Requirements

The library is intended to be used under Windows operating systems with 64-bit architecture. In particular the

library was tested to work on Windows 7 and 8.

1.3. Use the library for development

To use the library you need to include ClosedLoop.h and to link to the BWClosedLoop.lib library.

Document title

6

2. Overview

2.1. Specifications and data format

The library extends BrainWave and allows the user to interact with the acquisition process by subscribing to

Callbacks in order to read directly the data before it will be processed by normal acquisition flow, as in the

following picture.

The Total Data Delay represents the moment the data is read from the BioChip and the moment the data is
available through the BWClosedLoop library and depends from several factors.
The intrinsic delay between the reading of a BioChip activity frame and the moment data is received by the
acquisition board is in the order of 200μs. Afterwards, the data is buffered inside the acquisition board,
delivered to the host PC and buffered again in the PC memory. The BWClosedLoop.dll accesses this second
buffer directly, which is referred from here on Closed-Loop Buffer. The Closed-Loop Buffer contains a user-
defined number of subunit Data Buffers. Each of the Data Buffers contains in turn 5ms of acquired data and
consequently the Callback is fired every 5ms as soon as one subunit Data Buffer is ready. This is to be
intended as an average time since Windows is not a real-time OS, which means that occasionally the period
between two consecutive callbacks might be longer.

In normal circumstances, when the callback is processed rapidly enough, the acquisition board buffer and
the PC memory buffer are empty. In such case, the Total Data Delay is < 6ms.

However, in the case of a delay in the callback processing, the PC memory buffer can start filling up. This
implies firstly that the Total Data Delay increases. Secondly, if the buffer goes overrun, it causes also a data
loss.

Data obtained with the callback are in the following form:

Cycle index inside the DataBuffer is a progressive number that allows to know whether a buffer has been
eventually lost since the previous callback.

BioChip

BioCAM
Acquisition

Board

PC memory

BrainWave normal
acquisition flow

BWClosedLoop.dll
(Callback to the host

process)

Data Buffer

Cycle Frame 1 Frame 2 Frame n

Data Frame

...

Ch 1 (2bytes) Ch 2 (2bytes) Ch m (2bytes) ...

~200us	 ~5000us
time

Total	Data	Delay	

Document title

7

2.2. Tests

Tests were performed on a quad-core (8 separated threads) 3.6GHz processor, while running BrainWave and

an application tester using the BWClosedLoop.dll. Other applications were limited as possible and only basic

background processes were running.

Callback processing was simulated by putting the callback thread on sleep. Hence while reading the results,

it should be considered that i) on Windows a resolution lower than 1ms is not achievable with sleep functions,

ii) the sleep time is the minimum time for sleeping and there is no guarantee that after the sleep time the

scheduler will immediately execute the thread, iii) results might change in real applications when making

extensive use of the processor and hence indirectly affecting also the BrainWave threads.

Results showed that the Closed-Loop buffer was steadily empty while having a sleep time of 2ms, while with

a 3ms of sleep time the buffer periodically showed higher levels of buffered data, eventually leading to data

loss. Setting the callback thread priority to THREAD_PRIORITY_TIME_CRITICAL (see

SetCallbackThreadPriority) allowed to achieve a stable empty buffer with a 3ms of sleep. Higher level

of sleep times always led to data loss.

Document title

8

3. Function Reference

3.1. Subscribe

bool Subscribe(callback cb)

Parameters

cb [in]

a pointer to a function of type void*(long long, unsigned char*, int). The callback

function’s three parameters are:

dataIndex

a progressive number representing the index of the acquired data chunk, since the

beginning of the running acquisition

 data

a pointer to an array of unsigned char representing a sequence of Data Frames.

 dataLength

 the length of the data.

Return value

If the function succeeds, the return value is true, false otherwise.

Description

By subscribing to the capture process, the caller receives a callback every time a Data Buffer has been

acquired. The data index can be monitored in order to check that no Data Buffer is lost, which might happen

one the time to process the callback is longer than the callback period.

A Data Buffer consists of consecutive Data Frames, where each Data Frame in turn is made up by a

sequence of pair of bytes, one pair for each channel in the acquisition process. To know the position of an

acquired channel within the Data Frame refer to GetAcqFramePositionOfChannel. Each pair of bytes

codes the digital value of the recorded voltage amplitude with a 12 bits resolution. To convert into analog

values, refer to GetMVOffset and GetADCCountsToMV functions.

The ChCoord class is used to represent electrodes of the MEA device. A channel is identified by its spatial

coordinates, i.e. from the row and the column of its position.

3.2. Unsubscribe

void UnSubscribe()

Description

Unsubscribe from the callback routine.

Document title

9

3.3. SetCallbackThreadPriority

void SetCallbackThreadPriority(int priority)

Parameters

Priority [in]

the priority of the thread to set (see Windows function SetThreadPriority,

THREAD_PRIORITY_xxxx)

Description

Change the thread priority of the internal callback thread. The default priority of the internal callback thread

is THREAD_PRIORITY_HIGHEST.

3.4. GetNBuffers

int GetNBuffers()

Return value

The number of subunit Data Buffers that make up the Closed-Loop Buffer.

3.5. GetBufferLevel

double GetBufferLevel()

Return value

A value in the range [0 1] indicating the Closed-Loop Buffer fill level. In conjunction with the number of buffer

this value can help to estimate the Total Data Delay.

3.6. GetSamplingRate

double GetSamplingRate()

Return value

The sampling rate of the ongoing acquisition.

3.7. GetMVOffset

double GetMVOffset()

Document title

1

Return value

The microvolt offset used for digital to analog conversion according to
the formula:
analogValue = MVOffset + digitalValue * ADCCountsToMV.

3.8. GetADCCountsToMV

double GetADCCountsToMV()

Return value

The conversion factor used for digital to analog conversion according to
the formula:
analogValue = MVOffset + digitalValue * ADCCountsToMV.

3.9. GetArrayNRows

int GetArrayNRows()

Return value

The number of rows making up the BioChip Microelectrode Array.

3.10. GetArrayNCols

int GetArrayNCols()

Return value

The number of rows making up the BioChip Microelectrode Array.

3.11. GetNAcqChannels

int GetNAcqChannels()

Return value

The number of acquired channels.

Description

The number of acquired channels equals the number of array’s channel when the
full-array is acquired, i.e. no Region Of Interest (ROI) is set on the BrainWave
acquisition settings.
Whenever instead a ROI is set the number of acquired channels will depend from
that ROI and might not equal exactly the ROI, being the ROI a superset of the
effective acquired channels. Refer to the GetIndexesOfAcqChannels function to
know the effective acquired channels.

Document title

1

3.12. GetIndexesOfAcqChannels

int* GetIndexesOfAcqChannels()

Return value

A pointer to an array containing the linear indexes (referred to the BioChip
array) of the current acquired channels.

Description

Each channel has an array linear index associated to it. It is possible to
convert from linear index to row and column subscripts by using the function.

3.13. ChannelIndexToSubscripts

void ChannelIndexToSubscripts(int index, int& row, int& col)

Parameters

index [in]

the linear index of the channel within the BioChip array.
row [out]

the equivalent row subscript value (in the range [1 - 64]) corresponding to the specified index whether

exists; otherwise, -1.

col [out]

the equivalent col subscript value (in the range [1 - 64]) corresponding to the specified index whether

exists; otherwise, -1.

Description

Convert from linear index to subscript values.

3.14. ChannelSubscriptsToIndex

int ChannelSubscriptsToIndex(int row, int col)

Parameters

row [in]

the row subscript value (in the range [1 - 64]) of the channel within the BioChip array.

col [in]

the column subscript value (in the range [1 - 64]) of the channel within the BioChip array.

Return value

The linear index equivalents to the row and column subscript values whether exists; otherwise, -1.

Description

Convert from subscript values to linear index.

Document title

1

3.15. GetAcqFramePositionOfChannel

a) int GetAcqIndexOfArrayChannel(int index)

Parameters (a)

index [in]

the linear index of the channel within the BioChip array.

b) int GetAcqIndexOfArrayChannel(int row, int col)

Parameters (b)

row [in]

the row subscript value (in the range [1 - 64]) of the channel within the BioChip array.

col [in]

the column subscript value (in the range [1 - 64]) of the channel within the BioChip array.

Return value (a, b)

The position within the acquired channels of the specified array channel whether the channel is acquired;

otherwise, .1.

Description (a, b)

Each Data Frame within a Data Buffer is made up by a sequence of pair of bytes, or in other terms by a

sequence of Int16, which code the channel digital voltage. This function return the position of the Int16

within a Data Frame.

