

Documentation on the BrwExtReader.dll

Version 1.0.1

Date Jan 2012

Document title

2

All rights reserved. No parts of this work may be reproduced in any form or by any means - graphic, electronic,

or mechanical, including photocopying, recording, taping, or information storage and retrieval systems -

without the written permission of the publisher

Microsoft, Windows and Visual Studio are registered trademarks of Microsoft Corporation; MATLAB is

registered trademark of The MathWorks. Products that are referred to in this document may be either

trademarks and/or registered trademarks of their respective holders and should be noted as such. The

publisher and the author make no claim to these trademarks.

While every precaution has been taken in the preparation of this document, the publisher and the author

assume no responsibility for errors or omissions, or for damages resulting from the use of information

contained in this document or from the use of programs and source code that may accompany it. In no event

shall the publisher and the author be liable for any loss of profit or any other commercial damage caused or

alleged to have been caused directly or indirectly by this document

© 2011 3Brain GmbH

Document title

3

ContentsContentsContentsContents

1.1.1.1. IntroductionIntroductionIntroductionIntroduction .. 4444

1.1. About this manual ...4

1.2. Requirements ..4

2.2.2.2. The BRWThe BRWThe BRWThe BRW----filefilefilefile.. 4444

3.3.3.3. Using the library in .NETUsing the library in .NETUsing the library in .NETUsing the library in .NET .. 5555

3.1. The ChCoord class .. 5

3.2. The BrwRdr class ... 5

4.4.4.4. Using the library from MatlabUsing the library from MatlabUsing the library from MatlabUsing the library from Matlab .. 7777

4.1. Overview ..7

4.2. Limitations ..7

4.3. Example ... 8

Document title

4

1.1.1.1. IntroductionIntroductionIntroductionIntroduction

1.1. About this manual

This manual comprises information about the BrwExtReader library that can be used to read BrainWave data

files (BRW-file). It is assumed that the reader already has a basic understanding of technical and software

terms.

BrwExtReader.dll has been written in the C# programming language under the .NET framework.

BrwExtReader.dll can be used to implement a custom application in order to access offline data recorded with

the BioCAM acquisition systems.

1.2. Requirements

The BrwExtReader.dll library can be used on managed languages under Windows platforms. Tests under

Mono and other operating systems have not been made. –The .NET framework 3.0 or higher needs to be

installed. The library can also be accessed from MATLAB starting with release 2009a.

2.2.2.2. The BRWThe BRWThe BRWThe BRW----filefilefilefile

The BRW-file contains data written with the BrainWave software tool and acquired from the BioCAM system.

The file allows managing and storing different types of information both on the experiment session and on

the recorded signals.

With the BrwExtReader library the user can have access to basic information on the experiment and to the

data that has been recorded. In particular, the user can read both the raw data acquired from the

microelectrode array (MEA) mounted on the BioCAM system and the spike data obtained with real-time

analysis.

Raw and spike data represent different streams within the BRW-file that can be associated to specific array

positions. A MEA array position (electrode/channel) is identified through two coordinates, namely the row and

the column coordinate of the channel within the MEA. A BRW-file is made up of at least one stream of data

(raw or spike) and may also contain multiple streams for the same electrodes, depending on the acquisition

settings.

Raw data is acquired online by sampling the voltage signal sensed at each electrode site (or at a subset of

electrodes if otherwise specified by the user).Transmission and storage of the full-array activity is performed

as a sequence of images (frames). Single microelectrode raw data can then be reconstructed by recombining

single electrode data from sequential frames. The BrwExtReader library can perform this reconstruction and

allow the user to load from the BRW-file the raw data of one or more electrodes for a specific time range.

Spike data is derived by processing online the incoming raw data with spike detection algorithms that analyze

the entire array (or a channel subset if otherwise specified by the user) and store on the BRW-file spatial and

temporal information on the detected spikes. The BrwExtReader library is able to read the spike stream and

return the spike information within a specific spatial and time range.

Document title

5

3.3.3.3. Using the library in .NETUsing the library in .NETUsing the library in .NETUsing the library in .NET

The user can find detailed information on all the functionalities of the library within the help documentation

that is attached to the library. In what follows the basic functions used to load data from a BRW-file are

discussed. Usage examples are written in C# and to use them in an application the user needs to have a

reference to the BW namespace that contains the classes that will be described later. Under Visual Studio the

reference to the BrwExtReader.dll must be added by clicking on Project->Add Reference... and locating the

library. The following command at the beginning of each source file has to be added:

using BW;

3.1. The ChCoord class

The ChCoord class is used to represent electrodes of the MEA device. A channel is identified by its spatial

coordinates, i.e. from the row and the column of its position.

The following example shows some functionalities of the ChCoord class:

// print the row and column coordinates

ChCoord ch = new ChCoord(35, 55);
Console.WriteLine("The channel has coordinates: row: {0}; column: {1}", ch.Row, ch.Col);

// initialize an array of channel coordinates.
ChCoord[] chs = new ChCoord[] { new ChCoord(3, 10), new ChCoord(50, 5), new ChCoord(20, 10)

};

// default sorting is made by row, i.e. a channnel precedes another if its row coordinate is

// smaller and within the same row if its column coordinate is smaller

Array.Sort(chs);

Console.WriteLine("Channels sorted in ascending order using the default sorting
method\n{0}\n{1}\n{2}", chs[0], chs[1], chs[2]);

// sort by looking firstly to columns
Array.Sort(chs, new ChCoord.ByColumnComparer());

Console.WriteLine("\nChannels sorted in ascending order using the comparer that sort by

column\n{0}\n{1}\n{2}", chs[0], chs[1], chs[2]);

Console.WriteLine("\nClick return to exit...");

Console.ReadLine();

3.2. The BrwRdr class

The BrwRdr class is used to read the BRW-file. Once a new instance of the class has been initialized, the Open

method is called to load a BRW-file. Close or Open are called to unload the opened file or to switch to another

file.

// Initialize an instance of the BrwRdr class
BrwRdr brwRdr = new BrwRdr();

// you must use a valid full file path

brwRdr.Open("yourBrw.brw");

Document title

6

The RecDuration property is called to know the duration in number of milliseconds of the acquisition

contained in the BRW-file, while the RecNFrames property returns the duration in number of frames. The

SamplingRate property returns the sampling frequency in Hz of the recording.

// the number of frames of the recording
long nFrames = brwRdr.RecNFrames;

// the duration in seconds of the recording

double nSec = brwRdr.RecDuration / 1000;

// the sampling frequency

int sf = brwRdr.SamplingRate;

The NStream property returns the number of streams that have been stored into the BRW-file and the

StreamTypes property returns the array of stored StreamType, where StreamType is an enumerator for all the

possible stream that can be contained in a BRW-file.

ExistRawStream and ExistSpikeStream methods are used to know which type of streams are contained in the

BRW-file. The user can then get the number and the coordinates of the channels that are available for a

specific stream by calling the GetNRecChs and GetRecChs methods respectively. To check whether a certain

stream has been recorded for a a specific channel IsRawStreamFor and IsSpikeStreamFor methods can be

called. The GetRecChsUnion method returns the array of channel coordinates that have been recorded overall,

i.e. the union of the channels that have been recorded for each existing stream. The GetRecChsIntersection

method returns instead the intersection of the channels that have been recorded for each existing stream.

To load raw data you can use both the GetRAwData and GetRawDataADCCounts methods, where the former

returns values converted in microVolt and the latter returns values in ADC counts. The GetRawData methods

can be used by specifying the channel(s) coordinates and the frame range to load. To access spike data,

GetSpikes methods return the spike timestamps in number of frames. GetNDetectedSpikes might also be

used to know in advance the number of detected spikes for specific channel(s).

In the following example, the mean firing rate for each spike recorded channel is computed:

// check whether a spike stream exist
if (brwRdr.ExistSpikeStream())

{

 // gets the channels with a spike stream
ChCoord[] spikeChs = brwRdr.GetRecChs(StreamType.Spikes);

// the number of detected spikes for each channel

 int[] nSpikes = brwRdr.GetNDetectedSpikes(spikeChs);

 // the mean firing rate for each channel

 double[] mfr = new double[spikeChs.Length];

 // the overall mean firing rate
 double overallMfr = 0;

 for (int i = 0; i < spikeChs.Length; i++)
 {

 mfr[i] = nSpikes[i] / nSec;

 overallMfr += mfr[i];
 }

 overallMfr /= spikeChs.Length;

 Console.WriteLine("Overall mean firing rate: {0} spike/sec", overallMfr);
}

Document title

7

4.4.4.4. Using the library from Using the library from Using the library from Using the library from MatlabMatlabMatlabMatlab

4.1. Overview

MATLAB 2009a or higher allows to manage .NET assemblies (for detailed information the user can reference

to this online resource). Nonetheless there are some limitations in the interoperability between .NET and

MATLAB that will be discussed later on.

MATLAB can load a private .NET assembly, i.e. a library that is located in a certain specific folder, and access

the classes defined into the assembly. The command allowing for adding the assembly is:

asm = NET.addAssembly('fullPath');

where the full path is the path of the BrwExtReader.dll comprising the extension. The user can then explore the

asm variable in the MATLAB Variable Editor to view the components (classes, enums, etc.) that he can access.

Once the assembly is loaded it cannot be unloaded unless by quitting MATLAB.

From MATLAB the two classes, i.e. the ChCoord class and the BrwRdr class, that are needed to load data from

a BRW-file, are visible under the BW namespace. Instances of these classes appear in MATLAB as reference

types, i.e. they are only handles to the underlying data and copying or passing these instances to a method

equals to copy or pass only the handle. To create an instance of the BrwRdr class, a reference to it by its

qualified name, including also the namespace, is required:

brwRdr = BW.BrwRdr;

4.2. Limitations

A complete list of limitations to the MATLAB .NET support can be found here.

For what regards the matter of the present manual, the main limitations that the user should consider are: (i)

MATLAB cannot create or perform some operations with jagged arrays and (ii) MATLAB indexing of .NET

arrays has some restrictions.

A jagged (or ragged) array is a non-rectangular array that differs from normal multi-dimensional arrays (for 2-

dimensional array: a matrix [,] in MATLAB or for instance a System.Double[,] under .NET) since is an array

whose elements are arrays (for a 2-level jagged array of doubles the notation under .NET is System.Double[][]).

The elements (sub-arrays) of a jagged array can be of different sizes and this type of array is used in the

BrwExtReader library.

The reason for using jagged arrays resides firstly in the faster management of such arrays with respect to

multi-dimensional arrays under the .NET environment. Moreover, in some cases non-rectangular arrays are

more convenient. For instance when willing to load for two electrodes the spikes that have been detected

within a certain time range and that may differ in number between the two channels.

The user cannot directly convert a jagged .NET array into a MATLAB array as he would do for a multi-

dimensional .NET array by simply applying the double operator. However, the user can access the underlying

arrays and convert them. For instance, giving that data is a MATLAB handle to a jagged array of type

System.Double[][], the programmer can generate a MATLAB array for the nested array at position 0 into the

jagged array by typing:

a = double(data(ff(1));

For what concerns array indexing, the user should consider that only scalar indexing is supported for

accessing .NET arrays’ elements, being the MATLAB colon operator not supported. Hence, when you want to

Document title

8

derive an array whose elements are a subset of an existing .NET array, the user needs to create a .NET array

from MATLAB and then to assign the subset elements to the new created array. Supposing for instance to

have a chs MATLAB variable as a handle to an array of BW.ChCoord made up of 100 elements and to want to

derive another .NET array made up of only the first 10 elements, the user might type:

chsSubset = NET.createArray(‘BW.ChCoord’ , [10]);
for i = 1 : 10

chsSubset(i) = chs(i)
end

Another aspect that has to be considered when working in MATLAB with .NET assemblies is how types are

returned when calling members of .NET classes. When the user returns a value from a .NET method, in some

cases MATLAB leaves it in the original format, in others it does not. MATLAB keeps the original format in case

the type has not a direct MATLAB type counterpart (e.g., an instance of the ChCoord class) or in case the value

is an array. By having the value in the original .NET format the user can keep on interacting with other .NET

methods (for instance passing a ChCoord to the BrwRdr.IsRawStreamFor method).

When original .NET types are automatically converted in MATLAB types the user has to take care of the

conversion that toake place. For instance, calling the property in the BrwRdr class that returns the sampling

frequency:

sf = brwRdr.SamplingRate;

returns an Int64 sf value (automatically transformed from System.Int64 .NET type to an Int64 MATLAB type).

The returned value will limit the use of it and for instance the following operation:

x = (1 : 100) / sf;

will produce an error since integer are not supported in MATLAB for division operations. Hence a good practice

is to convert the values that are returned to the default MATLAB type, i.e. the double type, by:

sf = double(brwRdr.SamplingRate);

4.3. Example

In what follows the example shown before for a .NET application converted in MATLAB looks like:

% load the private assembly by the full file path
asm = NET.addAssembly('BrwExtReaderfilePath');

% create an instance of the BrwFile class
brwRdr = BW.BrwRdr;

% open a BRW-file (the returned value indicates whe ther the opening was
% successful)
succ = brwRdr.Open('yourBrw.brw');

if succ
 try
 % the duration in seconds of the recording
 nSec = brwRdr.RecDuration / 1000;

Document title

9

 % check whether a spike stream exist
 if (brwRdr.ExistSpikeStream())

 % gets the channels with a spike stream
 spikeChs = brwRdr.GetRecChs(BW.StreamType. Spikes);
 % the number of detected spikes for each channel
 nSpikes = double(brwRdr.GetNDetectedSpikes (spikeChs));

 % the mean firing rate for each channel
 mfr = zeros(spikeChs.Length, 1);
 % the overall mean firing rate
 overallMfr = 0;

 for i = 1 : spikeChs.Length
 mfr(i) = nSpikes(i) / nSec;
 overallMfr = overallMfr + mfr(i);
 end
 overallMfr = overallMfr / double(spikeChs. Length);

 msgbox(strcat('Overall mean firing rate: ' , ...
 num2str(overallMfr), 'spike/sec'));
 end
 catch ex
 brwRdr.Close();
 throw(ex)
 end
end

