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Methods

Introduction
) Dissociated cortical cultures were recorded on the APS MEA for 10, 15 and 20
APS - New generation Microelectrode Array (MEA) 5 2 minutes. Only channels with rates of 0.1 - 10 Hz were considered for analysis.
New generation electrophysiology tools open exciting possibilities & = Spikes were binned into 5ms time bins.
for understanding populations of neurons: APS (Active Pixel %‘ = = ekt
SenSOr) MEA [1,2] allows for simultaneous reCording from 4096 *§ % (4 randomly chosen neurons)
channels. Its 64 by 64 grid of 21-micrometre electrodes spaced 42 ° F E;-;m T e e e S SR L B S e v wmeras seen e e o e
micrometres apart provides a near-cellular resolution. B R ied et et et A et ettt Rt s sttt ettt ot ket ittt ettt timaboss
time [sec] 200 400 600 800 1000 1200
B e L A fixed number of channels (4 or 6) was repeatedly and randomly chosen (2000
MaxEnt - Maximum Entropy modelling slectrode x coord. and 400 sets, respectively). For each such subset, a MaxEnt model was fit to the
To analyse such volumes of parallel spiking data beyond simple measures (mean rates, correlations) distribution of spike patterns. In the case of 4 neurons fits, half of the subsets
we examine MaxEnt. It is a statistical model that explains a distribution of spiking patterns in terms of consisted of close-by neurons (within 8 electrodes), and half - of faraway neurons
individual neuron ‘local firing field' h; and neuron-neuron interacions jii (where s; is the state of neuron i: (more than 22 electrodes apart).
spiking 1 or not spiking -1): i s
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MaxEnt has been shown to characterize spiking patterns suprisingly robustly in many cases [3,4].
Arguably, this model is not without computational limits, and it has also been shown to fail for short-
range in vivo recordings [5]. Here we try to assess the utility of fits - and failures - of MaxEnt.
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Quality of the fits was assessed in two ways: by Kullback-Lieber divergence

R |t between data and model probability distributions (equivalent to log likelihood ratio);

ESUIS and by fraction of multiinformation, i.e. portion of entropy difference between
iIndependent model and the data explained by the MaxEnt.

FIGURE 1. Dense culture of neurons: comparison of FIGURE 2. Sparse culture of neurons: comparison of
statistics of MaxEnt fits between close-range subsets of statistics of MaxEnt fits between close-range subsets of
neurons and far-range subsets of neurons. neurons and far-range subsets of neurons. FIGURE 4. Pharmacological intervention in low-density culture data: comparison of
connection strength distribution changes with the application of GABA blocker
LagLikelihood ratio per minute: LogLikelihood ratio per minute: LogLikelihood ratio per minute: LogLikelihood ratio per minute: Gabazine; two spatial scales were considered separately.
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Conclusions

Connection strength Connection strength Connection strength Connection strength

It is computationally not feasible to compute a single MaxEnt model for a

. Di in high-densi . simpl irwise interacti Iculated f . L .
FIGURE 3. Distance dependence in high-density culture data: simple measure (pairwise interaction calculated from complete population of thousands of neurons. However, with high-density

data) shows no correlation with distance (correlation coefficient -0.044) while model-inferred connection strengths

change with distance (correlation coefficient -0.401). Same dataset as in Fig.1. Mean multiinformation captured: 89%. recordings it is possible to sample the population extensively. While such a
Mean LLR/min of independent model: 124. Mean LLR/min divergence of MaxEnt model: 12. method doesn't provide exact functional connectivity, it can still reveal
Interesting properties of the distribution of connections. Such as here,
w ; g ' ' ' ' ' ' ' demonstrating that while correlations between neurons are low and distance-
S Ll | £ ; independent, the underlying connection strengths appear to be distance
s | Bt _ . | mh T * =] _ dependent. Such information could be used to constrain models of interacting
T R 1 & ] populations of neurons.
*Em_ _ 3 e smE e _ | ® Another interesting observation is the varying degree of MaxEnt model
5 el ke T o& 0 ! 2 . ] 'failures'. As reported in [5], fits with high KL divergence most likely indicate
g e s e ®m mm mm e mw smo S o 5o om0 @m0 o0 sw0 @00 dooo higher-order correlations. Here we can see that in sparse cultures the higher-
= distance [micrometre] S distance [micrometre] order processing seems to be confined to close-by neurons (much like in vivo

data from [5]) while dense cultures are more uniform in that respect.
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