RECORDING RETINAL WAVES WITH A 4,096 ELECTRODES ARRAY NOVEL ANALYTICAL AND DATA SHARING TOOLS

E. Sernagor¹, A. Maccione², M. Gandolfo³, S. Eglen⁴, M. Hennig⁵, L. Berdondini⁶

¹Institute of Neuroscience, Newcastle University, Medical School, Newcastle Upon Tyne, UK; ²Neuroscience and Brain Technologies, Italian Institute of Technology, Genova, Italy; ³Biophysical and Electronic Engineering, University of Genova, Italy; ⁴DAMTP, Centre for Mathematical Sciences, Cambridge University, UK; ⁵Institute for Adaptive and Neural Computation, University of Edinburgh, UK

development.

Waves of spontaneous activity sweep across the immature retina. The spatiotemporal To enable sharing of the novel retinal data acquired with the APS MEA system between information encoded in these waves is believed to play a crucial role in guiding the different laboratories (e.g. Genova, Newcastle, Edinburgh, Cambridge), we are using the formation of connections in the visual system. To this day, no experimental approach has resources provided by CARMEN (Code Analysis, Repository and Modelling for e-provided enough accuracy to analyse wave dynamics in great detail, and mostly, to Neuroscience), a new data sharing facility developed in the UK with funding from the understand how the spatiotemporal features of this early retinal activity changes with Engineering and Physical Sciences Research Council- http://www.carmen.org.uk/. CARMEN allows us to share data and analytical codes over the internet.

Using the APS MEA with 4,096 electrodes (64x64 array, 21 µm resolution) recording at 7.8kHz [1], we have been able to record pan-retinal waves in the neonatal mouse with [1] Active pixel sensor array for high spatio-temporal resolution electrophysiological recordings from unprecedented spatiotemporal accuracy. These recordings will help further understand single cell to large scale neuronal networks. Berdondini L et al. Lab Chip 9, 2644-2651 (2009). the role of retinal waves upon the wiring of the visual system.

DATA PROCESSING AND ANALYSIS

1. Visualization of raw data

	-	
		700 µ
	-	
	*	
www.www.www.www.www.www.www.www.www.ww	-	
Provide and the second s	-	

Traces of raw signals generated by retinal ganglion cells recorded from 12 channels selected within the path of an episode of spontaneous bursting activity in a postnatal day (P) 10 retina. Increasing delays in bursting onset reveal propagating activity patterns across the network

2. Spike detection

Spike detection is performed off-line using a recently developed Precise Timing Spike Detection (PTSD) algorithm [1], enabling fast and precise identification of the spike events.

1.6 mV

computing the signal variance

A two dimensional view of the activity is necessary to visualize these patterns. This is shown in time lapse single

frames of activity raw data acquired every 0.5 s. The extracellular signals are shown in a false colour map by

[1] A novel algorithm for precise identification of spikes in extracellularly recorded neuronal signals. A. Maccione, M. Gandolfo, P. Massobrio, A. Novellino, S. Martinoia and M. Chiappalone, J Neurosci Meth (2008), DOI 10.1016/j.jneumeth.2008.09.026

4. Quantification of spatiotemporal activity patterns

Scatter plots of pairwise correlations (covariance of spike count changes) as a function of the distance between the electrode pairs. The column plot illustrates the decay constant of the fit (red line on scatter plots) at different exponential developmental stages. Correlations become stronger with development.

P5 P10 After identifying network bursts, the Center of Activity Trajectory (CAT) is computed on the raw

data providing a trajectory that represents the "center of mass" of the electrical activity. Blue trajectory start. Red - trajectory end.

CATs are classified into clusters [1]. Across development. the number of detected clusters decreases dramatically and the number of waves belonging to each cluster increases, demonstrating that Stage III waves do not propagate in random patterns anymore.

 Tracking burst patterns in hippocampal cultures with high-density CMOS-MEAs. Gandolfo M, Maccione A, Tedesco M, Martinola S and Berdondini L, J Neural Engineering (2010) (in Press)

3. Spike train visualization

plot of detected spikes Raster during the same activity episode Section Each line 1. as in represents one active channel. plot reveals The complex spatiotemporal patterns

Maps of activity (log firing rate, all active channels) obtained during 10 min of continuous recording. Early waves (Stage II, cholinergic) are random, hence no clear patterns are detected on the maps. Late waves (Stage III, glutamatergic), however, become more repetitive and spatially restricted

CARMEN FOR DATA AND CODE SHARING

We use CARMEN as a platform to share APS data files (Matlab matrices of spike times). These files are then used to perform further analysis using codes written in R or in Matlab. Currently we have analytical tools that were written in R to analyze neural activity from 60 channels MEAs that have been deployed on the CARMEN portal. These tools have been modified so make them compatible with MEA data acquired using different platforms, including the APS MEA. In the example above, the 4-plot service generated a map of the active electrodes, a plot of the average firing rate, a raster plot of the active channels and a plot of the correlation index between pairs of electrodes [1]. We are in the process of developing many more visualization and quantification tools that will be deployed on the CARMEN portal in the near future.

Transient period of correlated bursting activity during development of the mammalian retina. Wong RO, Meister M, Shatz CJ. Neuron 11, 923-938 (1993).